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Abstract 
The mammalian Target of Rapamycin (mTOR) nutrient-sensing pathway 
plays a fundamental role in cell growth, and proliferation, as well as in tumor 
metabolism. mTOR is the catalytic subunit that nucleates two functionally 
and structurally distinct complexes namely; mTORC1 (mammalian Target 
of Rapamycin Complex 1) and mTORC2 (mammalian Target of Rapamycin 
Complex 2).

mTORC1 integrates inputs from nutrients, growth factors, and environmental 
cues; and transduces signals to downstream targets to promote anabolism 
and decrease catabolism. As such, mTORC1 is considered a master regulator 
of metabolism, cell growth, and proliferation. mTORC1 is activated by 
PI3K (phosphoinositide 3-kinases)-Akt/PKB (protein kinase B) and Ras-
ERK ( extracellular signal-regulated kinase) pathways, both of which are 
the most common oncogenic signaling pathways activated in cancer. 
Recently, mTORC2 emerged as an important contributor to cellular and 
tumor metabolism. mTORC2 receives inputs mainly from growth factors 
and regulates the organization of actin cytoskeleton, cell survival, and 
cellular metabolism. This review focuses on the role of mTORC2 in cellular 
metabolism and cancer metabolism.

Understanding the underpinning of mTORC2 signaling and targeting both 
mTORC1 and mTORC2 complexes, holds promise for regimens in cancer 
early detection, monitoring, and treatment.

Keywords: mTOR, mTORC1, mTORC2, metabolism, signal transduction, 
metabolic reprogramming, upstream signals, downstream targets

Introduction 
The conserved evolutionary Target of Rapamycin (TOR) protein 
was initially discovered in the budding yeast, Saccharomyces 
cerevisiae [1,2]. Subsequently, orthologs were identified in a 
variety of organisms including Drosophila (dTOR) [3], Zebrafish [4], 
and higher eukaryotes [5]. The mammalian Target of Rapamycin 
(mTOR) is a conserved serine/threonine protein kinase that 
functions as a key integrator of cell growth and metabolism 
(reviewed in [6-9]). mTOR signaling pathway receives inputs from 

nutrients, growth factors, immune cells, and energy; and integrate 
signals that drive cell growth and metabolism (reviewed in [10]). 
Additional level of complexity of mTOR regulation stems from the 
negative [11] and positive feedback [12] from insulin signaling 
pathway; as well as the cross-talk with several oncogenic; and 
tumor suppressor pathways [13,14].

mTOR is the catalytic submit of two functionally and structurally 
distinct complexes namely; mTORC1 (mammalian Target of 
Rapamycin Complex 1) and mTORC2 (mammalian Target of 
Rapamycin Complex 2) (Figure 1) [15]. mTOR kinase nucleates 
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Although rapamycin and rapalogs are considered the prototypes 
of mTOR inhibitors; several investigators documented that 
rapamycin mainly blocks mTORC1 functions but not mTORC2, 
at least, during acute treatment [6, 24,25]. However, prolonged 
treatment with rapamycin inhibits mTORC2 functions secondary 
to blocking mTORC2 assembly in some cell lines [26]. As 
mentioned earlier, 4E-BP1, a downstream effector of mTORC1, is 
not inhibited by rapamycin suggesting the presence of rapamycin-
resistant mTORC1 functions [6,16]. These data partially explain 
the less enthusiastic and perhaps conflicting results of mTOR 
inhibition by rapamycin in clinical trials [27]. Recently, a newly 
developed class of mTOR inhibitors, termed the ATP-competitive 
mTOR kinase inhibitors, have been shown to inhibit both mTORC1 
and mTORC2 complexes [28,29]. These mTOR kinase inhibitors 
are currently under investigation in clinical trials for their use as 
anticancer agents either alone or in a combination with other 
drugs.

mTORC2 and Amino Acid Metabolism
In yeast, it has been well documented that amino acids are 
critical regulators of TOR signaling [30]. mTORC1 controls cell 
growth, ribosome biogenesis, mRNA translation, autophagy, 
and metabolism [31-35]. On the other hand, mTORC2 control 
cell proliferation, survival, and organization of actin cytoskeleton 
[36,37]. mTORC1 is regulated independently by insulin, growth 
factors and amino acids. Also, active mTORC1 phosphorylates 4E-
BP1 to release the translation initiation factor 4E (initiation factor 
eIF4E) and maintain protein translation. Recent studies show that 
mTORC2 associates with ribosomes and thus may be required for 
protein synthesis as well [38]. Using a genetic screen in yeast, 
Zinzalla and colleagues [38] identified the interaction between 
mTORC2 and the ribosome. As such, mTORC2-ribosome binding 
is suggested to be an important factor in driving the oncogenic 
PI3K signaling in cancer. Compelling evidence revealed that the 
dysregulation of mTOR is linked not only to the development of 
chronic diseases [13,14,39], but also to the progression of several 
types of cancers [40,41].

In higher eukaryotes, mTORC1 is regulated by nutrients such 
as amino acids. In this manner, amino acids activate S6K1 
(p70S6k1), downstream of mTORC1, to drive cellular anabolism; 
and inhibits autophagy [42]. Ben-Sahra et al. (2013) reported 
that mTORC1 regulates metabolic flux by controlling de novo 
synthesis of pyrimidine that can lead to increased DNA synthesis 
required for tumor growth [43]. Significant progress in the last 
few years identified the signaling molecules implicated in amino 
acid sensing by mTORC1. These signaling molecules include Rag 
GTPases [44,45], v-ATPase (vacuolar H+-adenosine triphosphate) 
[46] and the Ragulator complex [10]. Until recently, it has been 
assumed that mTORC2 is largely resistant to regulation by 
nutrients and is activated by growth factors only. However, Tato 
and colleagues suggested that amino acids may activate mTORC2 
via Class I PI3 kinase [47], which in turn, phosphorylates the 
Forkhead transcription factor (FOXO3a) to promote cell survival 
and proliferation. As a result, phosphorylation of FOXO3a on Thr-
24 leads to the exclusion of FOXO3 from the nucleus and thus 
preventing the activation of its proapoptotic targets [47]. Using 
mTOR and Rictor siRNA knockdown, and in vitro kinase assays in 

mTORC1 complex. As such, mTOR binds exclusively to the 
rapamycin-sensitive regulatory-associated protein of TOR 
(Raptor) in the mTORC1 complex. The complex also binds other 
proteins including the DEP domain-containing mTOR-interacting 
protein (Deptor), the mammalian lethal with Sec13 protein 8 
(mLST8, also known as GβL), and PRAS 40 as shown in Figure 1. 
By contrast, mTORC2 complex exclusively binds the rapamycin-
insensitive companion of TOR (Rictor), mammalian stress-
activated map kinase-interacting protein 1 (mSIN1), Protor1/2 
(protein observed with rictor, also called PRR5), and shares mLST/
GβL, and Deptor subunits (Figure 1). Furthermore, eIF4E-Binding 
Protein 1 (4E-BP1), a downstream effector of mTORC1, is also not 
inhibited by rapamycin suggesting the presence of rapamycin-
resistant mTORC1 functions [6,16].

The prototype and most studied inhibitor of mTOR is the lipophilic 
macrolide drug rapamycin that has antifungal properties (also 
known as sirolimus). Subsequently, the immunosuppressive 
properties of rapamycin were discovered, and thus its use 
as an antifungal was discontinued. Rapamycin was originally 
extracted in 1975 from a soil bacterium termed Streptomyces 
hygroscopica in the Eastern Island, Rapa Nui, hence the name 
Rapamycin (RAPA). RAPA and its analogs, referred to as rapalogs 
(everolimus, temsirolimus, deforolimus or ridaforolimus, etc.) 
are currently assessed as cancer treatment candidates in several 
clinical trials including Phase I [17], II [18], and III [19] trials. The 
FDA has approved the use of everolimus in treating pancreatic 
neuroendocrine tumors [20]. However, the results of the clinical 
trials vary across the cancer spectrum. This is attributable, at 
least in part, to the discovery of mTORC2 complex, rapamycin-
resistant functions of mTOR [21]; the unfolding intricacies of 
mTOR signaling and crosstalk [22]; as well as mTOR tissue-
specificity [23].

Figure 1 Components of the Mammalian Target of Rapamycin (mTOR) 
complexes. The mTOR serine/threonine protein kinase catalytic 
subunit enucleates the center of both mTOR complexes. mTOR 
complexes have some unique partners and some shared partners 
between the two complexes. mTORC1 consists of mTOR catalytic 
subunit exclusively contains Raptor (regulatory associated protein 
of mTOR) and ); PRAS 40 (AKT/PKA substrate 40 kDa protein; and 
shares mLST/GβL (mammalian lethal with sec13 protein 8/G-protein 
β-protein subunit likeDeptor (DEP-domain-containing mTOR-
interacting protein.
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Hela cells, the authors show that upon stimulation with amino 
acids, mTORC2 failed to stimulate Serine 473 phosphorylation 
of Akt/PKB. Thus, it appears that amino acid homeostasis is 
mediated via both TORC1 and TORC2. The authors showed that 
isp7 (+) regulates amino acid uptake and that isp7 (+) transcript is 
positively activated by TORC2 and negatively regulated by TORC1 
[48].

Branched chain amino acids (BCAA) particularly leucine, has been 
reported to facilitate insulin-mediated Akt phosphorylation and 
this effect was blocked by siRNA against mTORC2 components 
[49-51]. Additionally, it has been shown that leucine is 
transported intracellularly in a glutamine-dependent manner 
[52] via a mechanism that involves the heterodimeric Solute 
Carrier Family, SLC7A7, and SLC3A2 [15]. Another amino acid, 
glutamine, is known to stimulate small intestinal mucosa growth 
and constitutes a major fuel for the small intestine together with 
aspartate and glutamate [53]. The Glutamate Transporter 1 (GLT1) 
upregulation is currently thought to be mediated via an mTOR-Akt-
NF-ƙB mechanism [54]. In this manner, Ji and colleagues reported 
that GLT-1 is regulated by the oxygen-glucose deprivation, via a 
mechanism that involves mTOR/Akt/NF-ƙB signaling. Additionally, 
the authors’ findings indicate that both mTORC1 and mTORC2 
are involved in this process in the astrocytes [54]. Recently, it 
has been shown that the glutaminolysis pathway, a pathway 
that catabolizes the conversion of glutamine into glutamate and 
ketoglutarate, is activated in cancer and that mTOR complexes 
may regulate this pathway; [55]. In addition to glycolysis, the 
glutaminolysis pathway is upregulated in cancer via c-myc and 
provides TCA cycle intermediates to fuel the tumor accelerated 
growth and promote its survival [56,57].

mTORC2 and Glucose Metabolism
mTORC1 senses the nutrients and energy level and is activated 
by glucose and the glycolytic intermediates [58]. It has been well 
documented that increased glucose uptake leads to increased 
mTORC1 activity [59]. In turn, increased mTORC1 activity increases 
the expression of glucose transporters that will further promote 
glucose uptake. Studies in the skeletal muscles and liver in rodents 
revealed that mTORC1 signaling regulates both insulin sensitivity 
and insulin signaling, via a negative feedback loop [11,60]. We 
have shown in guinea pigs that rapamycin administration led to 
increased plasma glucose and insulin resistance as determined 
by the Homeostatic Model Assessment (HOMA) analysis [46]. 
Furthermore, Um and Colleagues discovered that the global 
knockout of S6K1 in mice (a downstream target of mTORC1) 
enhanced insulin sensitivity due to loss of S6K-mediated feedback 
inhibition of IRS1 (Insulin receptor substrate 1) [11]. Whereas, 
deletion of Rictor, which phosphorylates Akt-Ser 473 upstream of 
mTORC1 [46], led to glucose intolerance due to the discordant 
beta cell proliferation and cell size [61].

sesn3, is a member of the stress-induced protein implicated in the 
resistance to oxidative and genotoxic stress. Using Sestrin 3 (sesn 
3) liver-specific knockout and transgenic mice models, Tao and 
colleagues demonstrated that sesn3 activates Akt via mTORC2 
to regulate glucose metabolism [62]. In this capacity, sesn3 
interacts with mTORC2 directly and as a result mTORC2 activates 
and phosphorylates Akt at Ser 473. Interestingly, mTORC2 

increases glycolysis via Akt activation in the skeletal muscle [63] 
and liver [64], and regulates IRS-1 degradation which may lead 
to insulin resistance [65]. Tissue-specific rictor knockout mice 
studies provided a significant insight into the role of mTORC2 
signaling in pancreatic glucose regulation [66]. Also, knockout 
experiments in mice revealed that mTORC2 core component, 
rictor, has been shown to activate GLUT 4 ( glucose transporter 
4), to induce glucose transport in skeletal muscles [67]. These 
studies demonstrated that deletion of rictor results in decreased 
both beta cell mass and beta cell proliferation that together led to 
decreased insulin synthesis. As a results, these animals exhibited 
glucose intolerance and hyperglycemia.

Additional level of regulation stems from the emerging role of 
mTORC2 in regulating a multifunctional kinase GSK-3B (Glycogen 
Synthase Kinase) via Akt [68-70]. GSK protein phosphorylates 
glycogen synthase, and the dysregulation of GSK is implicated in 
the pathogenesis of chronic diseases such as diabetes and cancer. 
Interestingly, GSK3 was also found to phosphorylate rictor at Thr-
1695 site in a process mediated by FBXW7 ( F-Box and WD Repeat 
Domain Containing 7, E3 Ubiquitin Protein Ligase) and this leads 
to rictor ubiquitin degradation [71]. Furthermore, Akt activity 
and activation of eIF2 α, [72] a key regulator of cell oxidative 
stress response, are both required during cell proliferation and 
survival under stress. To maintain homeostasis, GSK-3β has been 
shown to negatively regulate mTORC2 by phosphorylating rictor 
at S1235 [73]. This S1235 inhibitory phosphorylation impairs the 
ability of mTORC2 to phosphorylate and active Akt at Ser 473 
[69]. Ramakrishnan and colleagues reported that Sirtuin 2 (Silent 
mating-type information regulation 2), a cytoplasmic NAD+ 
dependent deacetylase involved in the cell cycle regulation, is 
necessary for optimal Akt activation in cell culture [74]. These 
findings suggest that Akt is regulated at multiple levels that have 
significant impact on glucose metabolic homeostasis. Thus it 
appears that the coordinated signaling of mTORC1 and mTORC2 
is required to maintain cell proliferation and metabolism.

Treins et al (2012) showed that in mice, the double mutant 
deletion of both S6K1, downstream of mTORC1, and Akt2, 
downstream of mTORC2, led to impaired glycemic control [75]. 
Currently, the phosphoproteomic profiling and genomic analysis 
studies suggest that hepatic mTORC2 is involved in several steps 
of the intermediary glucose and lipid metabolism [76]. Along 
the same line, fat-tissue specific rictor knockout studies in mice 
suggest that mTORC2 is important in whole body glucose and 
lipid metabolism [77].

mTORC2 and Fatty Acid Metabolism
Lipogenesis, the process by which acetyl-CoA is converted to fatty 
acid is mainly under the control of mTORC1 and other anabolic 
signals (reviewed in [78,79]). mTORC1 is activated during the 
nutrient abundance to promote synthesis, cell growth, and 
proliferation. As a result, mTORC1 activates the expression of 
the lipogenic genes [22], and downregulates the lipid catabolic 
processes such as lipolysis, [46, 80], β-oxidation, and autophagy 
[81, 82]. The integral role of mTORC1 in lipid metabolism has 
been documented by several laboratories (reviewed in [82-86]. 
On the other hand, less is known about the role of mTORC2 in 
lipid metabolism.
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inhibits lipolysis in 3T3-L1 adipocytes [80]. Additionally, ablation 
of rictor in adipose tissue-specific mice was unable to inhibit 
lipolysis even in the presence of insulin. Other investigators have 
shown that mTORC2 inhibits lipolysis by blocking the activation 
of PKA (Protein Kinase A) [77]. Taken together, it appears that 
both mTORC1 and mTORC2 are required as negative regulators of 
lipolysis in the adipose tissue.

Another component of mTORC2 is Protor (Figure 1). Studies using 
single and double mutant Protor isoforms Protor-1 and Protor-2, 
demonstrated that protor did not affect the ability of mTORC2 
components to assemble into complex. However, -1 was needed 
for SGK-1 phosphorylation in the kidney, and thus contributes to 
cell proliferation [94, 95].

mTORC2 and Cancer Metabolism
As discussed earlier, mTOR is a central regulator of cellular 
metabolism, growth, and proliferation, cell cycle progression, 
as well as cancer metabolism [15,79,96]. Targeting the cancer 
metabolic and bioenergetic pathways affords great promise in 
the field of cancer therapeuticsCancer metabolic reprogramming 
is a hallmark of cancer and allows the cells to rewire their 
metabolism and energy sources to favor tumor survival [97]. 
Increased glycolysis and preference of lactate production even 
in the presence of oxygen commonly known as the Warburg 
effect [30, 98], is a metabolic characteristic of cancer; however 
its significance remains elusive. This altered homeostatic state 
allows for an anabolic state to drive the nutrients to increase their 
cellular growth capacity [38], and to promote rapid proliferation, 
invasion, metastasis and resistance to cancer therapy. One 
such anabolic pathway, is mTOR nutrient-sensing pathway, that 
provides energy and vital metabolites to favor tumorigenesis.

Furthermore, mTOR lies downstream of several oncogenic and 
tumor suppressor pathways and is a critical player in the tumor 
microenvironment network [99]. Current studies have shown 
that the tumor microenvironment mediates mTOR-targeted 
tumor resistance to therapy [99]. The tumor microenvironment 
is not static entity but rather functions as a sophisticated 
network between tumor cells, stromal, immune cells, acellular 
matrix, soluble cytokines, proteases as well as components 
of the extracellular matrix. This complex interaction is a key 
player in cancer metabolism, tumor growth, progression, and 
metabolism and in acquiring drugresistance [100]. The tumor 
microenvironment can influence the tumor immune-editing 
process [101], tumor heterogeneity [102], and thus may lead to 
therapeutic resistance [99]. Understanding cancer metabolism will 
enable developing effective cancer treatments. As such, targeting 
metabolic reprogramming is a promising direction for cancer 
therapeutics; and pathways that contribute to bioenergetics, 
and metabolic reprogramming can provide significant insight into 
optimal personalized therapeutic interventions.

mTORC 2 consists of mTOR catalytic subunit, exclusively Rictor 
(rapamycin-insensitive companion of mTOR), mSIn1 (mammalian 
stress-activated protein kinase interacting protein 1) and 
Protor1/2 (protein observed with rictor, also called PRR5), and 
shares mLST/GβL, and Deptor subunits.

The role of mTORC2 in lipogenesis is just beginning to unravel. 
Studies in liver-specific rictor knockout mice revealed that 
these mice exhibited decreased SREBP1c (sterol regulatory 
element binding protein 1c) activity. SREBP1c is a transcription 
factor required for sterol biosynthesis and denovo lipogenesis. 
Furthermore, the reduction in SREBP1 activity was coupled with 
decreased phosphorylation of Akt serine 473 on the hydrophobic 
domain, a site that is phosphorylated by rictor [64]. Along the 
same line, Yuan and colleagues reported decreased expression 
of SREBP1 and other genes involved in cholesterol and fatty acid 
synthesis in the rictor-liver specific knockout mice [87]. In cancer 
cells, mTORC2 regulated lipogenesis by inhibiting GSK3/FBXW7 
dependent degradation of SREBP1 [88]. In a goose model of 
hepatocytes, Han et al. reported that Sirt 1, the NAD-dependent 
deacetylase regulates mTOR complexes signaling in hepatocyte 
lipid metabolism.

Surprizinglying, studies in adipose tissue specific rictor-knockout 
mice had no defect in adipogenesis [89]. Adipogenesis is the 
process by which preadipocytes differentiate into adipocytes. 
The adipocytes in turn store fatty acid energy as triglycerides. Yoa 
et al. reported that mTORC2 activates adipocyte differentiation 
and early adipogenesis via a mechanism that involves interaction 
of Akt1 with BTSA (BTSA domain-containing Signal transducer 
and Akt interactor). Akt-BSTA interaction was a crucial step prior 
to mTORC2-mediated phosphorylation of Akt at Serine 473 site 
[90]. The authors show that mTORC2 facilitated BSTA and Akt1 
interactions, and as a result, mTORC2 phosphorylated Akt1 at 
Ser 473 and promoted the adipogenesis process [81, 90]. Full 
activation of Akt requires the phosphorylation on two sites 
located on the hydrophobic domain, namely Thr 308 (which is are 
phosphorylated by PDK1 3 phosphoinositide-dependent-kinase1 
and Ser 473 (which is phosphorylated by rictor). Therefore, it is 
possible that both phosphorylation sites are required for optimal 
phosphorylation of Akt. Akt could retain partial activity with the 
initial phosphorylation at Thr 308 [77, 89, 91] . Therefore, the 
discrepancy between both studies might reflect differences in 
the partial reduction of Akt activity as a result of rictor deletion. 
Alternatively, it could be argued that mTORC2 is essential in 
early adipogenesis but dispensable during late adipogenesis and 
terminal differentiation [92].

Lysophosphatidic acid is converted to phosphatic acid (PA) by 
the enzyme Lysophosphatidic acid acyltransferase (LPAAT-β), 
a step that is required for triglyceride synthesis. Blaskvich and 
colleagues found that PA produced LPAAT- β regulates mTORC2 
signaling. Therefore, it appears that mTORC2 may play a role 
in triglyceride synthesis [93] in addition to the documented 
role of mTORC1 on lipogenesis [82]. Additionally, PA is formed 
from phosphatidylcholine in a reaction that is catalyzed by 
phospholipase D. Recently; Lyo et al. demonstrated that mTORC2 
is required for PLD-mediated survival signaling. In this manner, 
PLA stabilizes MDM2 (Murine Double Minutes 2), the major 
regulator of tumor suppressor gene p53 suggesting that mTORC2 
provide growth advantage in cancer.

Lipolysis, the process of breaking down triglyceride to release 
free fatty acids, is increased during nutrient deprivation to 
provide FFA to produce energy. It has been shown that mTORC1 
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