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Abstract
Purpose: This article will provide a narrative review of evidence regarding proposed 
mechanisms, diagnosis, and treatment of neurogenic pulmonary edema (NPE) in 
the critical care setting. 

Methods: PubMed and Ovid databases were searched for observational or 
prospective studies relevant to the diagnosis and treatment of NPE. 

Results: While the specific mechanisms responsible for NPE remain uncertain, 
putative mechanisms include catecholamine release with resultant pulmonary 
vasoconstriction termed the “blast injury theory”, increased vagal tone, and 
increased capillary permeability. Diagnosis involves identifying signs of pulmonary 
edema in the setting of a brain injury, and treatment modalities appear to work 
best when balanced towards maintaining a normal physiologic state. 

Conclusion: Acute Brain Injury (ABI) consists of any acquired insult to the brain 
and is a significant cause of morbidity and mortality worldwide. Approximately 
20–30% of patients with ABI develop lung injury. Neurogenic Pulmonary Edema 
(NPE) is an often underdiagnosed, but an important sequela of ABI, which may 
result in additional long-term morbidity. It is therefore an important for providers 
to recognize and tailor their clinical approach towards. 

Keywords: Acute respiratory distress syndrome; Control of ventilation; 
Catecholamine; Neurology; Pulmonary edema; Acute brain injury

Abbreviation: ABI: Acute Brain Injury; ARDS: Acute Respiratory Distress Syndrome; 
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Edema; PE: Pulmonary Embolism; PEEP: Positive End Expiratory Pressure; SAH: 
Sub-Arachnoid Haemorrhage; SDH: Sub-Dural Haemorrhage; SSP: Sagittal Sinus 
Pressure; TCD: Transcranial Doppler 
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Introduction
Trauma is a frequent cause of Acute Brain Injury (ABI) worldwide 
and although less frequent, Subdural Hemorrhage (SDH), 
Subarachnoid Hemorrhage (SAH), Intra-Parenchymal Hemorrhage 
(IPH), meningitis, stroke, status epilepticus and others have also 
been attributed to brain injury [1]. An often under-recognized 

unique complication of ABI is Neurogenic Pulmonary Edema 
(NPE). Overall, the incidence of NPE is estimated to be around 
20-30% of patients with ABI [2-9]. Approximately 15% of patients 
with either Hunt and Hess grade III-V or Fisher grade III-IV 
Subarachnoid Hemorrhage (SAH) develop neurogenic pulmonary 
edema [10,11].
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This review aims to describe the proposed pathophysiologic 
mechanisms with an additional focus on the management of 
pulmonary complications in patients with NPE. 

Methodology
Pathophysiology 
Although the exact cause is unknown, several theories have been 
proposed to explain the pathophysiology of pulmonary edema 
in the setting of ABI. We will discuss the proposed mechanisms 
involving multiple cascading events that concomitantly occur 
during the development of NPE. 

Catecholamine induced peripheral vasoconstriction: A wealth 
of knowledge was gained from the early observations in animal 
experiments using noxious stimulation of the Central Nervous 
System (CNS) to study its effects on the cardio-pulmonary 
system. It was observed that lesions of the CNS produced in 
this way resulted in an elevation of pulmonary and systemic 
arterial pressures [13-15]. Moreover, bilateral upper thoracic 
sympathetectomy or even total lung denervation did not prevent 
the elevation of these pressures [13]. It was thus concluded that 
severe peripheral vasoconstriction induced by catecholamines 
released as a consequence of CNS injury results in severe systemic 
hypertension causing strain on the Left Ventricle (LV), similarly 
seen in Takotsubo cardiomyopathy [16]. This leads to secondary 
LV dysfunction causing elevation of left atrial and pulmonary 
venous pressures, and subsequently pulmonary edema. 
Pulmonary edema has been seen as the sole presentation 
in patients with pheochromocytoma, presumably from the 
catecholamine surge [17].

Pulmonary venoconstriction: Maron MB and Dawson CA 
[18] showed that in an experimental model with increased 
cerebrospinal fluid pressure in dogs caused catecholamine 
induced pulmonary venoconstriction in a denervated lobe of the 
lung. Indirect observations in humans using initial alveolar edema 
fluid to plasma protein concentration ratio in patients without 
heart failure or volume overload points towards a hydrostatic 
mechanism for the development of NPE. Smith WS and Matthay 
MA [19] concluded either pulmonary venoconstriction or 
transient elevation in left-sided cardiovascular pressures as the 
contributing causes to the development of human neurogenic 
pulmonary edema. 

In addition to the catecholamine mediated pulmonary 
venoconstriction, centrally mediated reflex neural mechanisms 
have also been proposed. Moss G, et al. [20] demonstrated that 
changes of ARDS can occur following cerebral hypoxemia without 
any increase in systemic blood pressure. They proposed a centrally 
mediated pulmonary venous spasm triggered by hypothalamic 
hypoxia resulting into pulmonary hypertension and ARDS, 
suggesting an alternative reflex neural mechanism independent 
of systemic hypertension. Other studies demonstrated by 
Gamble JE and Patton HD [21] and Maire FW and Patton HD 
[22], that selective bilateral lesions of the preoptic regions of the 
hypothalamus resulted into hemorrhagic pulmonary edema in 
rats. However, the effects of these lesions on the cardiovascular 
system were not studied in these experiments. Schraufnagel 
DE and Patel KR [23] studied the effects on neural stimulation 

after a blunt force to the brain in a rat model. They found that 
pulmonary veins have sphincters that are strategically placed to 
influence blood flow which respond to neural stimuli initiated by 
a sharp head blow and could potentiate the degree of neurogenic 
pulmonary edema.

Blast injury theory: Direct vasoconstriction on the pulmonary 
vascular bed endothelium is difficult to consider as a sole cause 
of NPE. Administration of vasoconstrictors into heart-lung 
preparations has shown no significant effect on lung weight [24]. 
This suggests a synergistic process and the formation of what has 
come to be called the “blast injury theory”, first introduced by 
Theodore J and Robin ED [25]. Similar to the neuro-hemodynamic 
models, the "blast injury theory" posits that the severe abrupt 
increases in systemic and pulmonary pressures following the 
catecholamine surge result in a net shift of blood volume from the 
systemic circulation to the low resistance pulmonary circulation 
[7,26]. This increase in pulmonary venous pressure leads to the 
development of transudative pulmonary edema [26]. However, 
in an experimental model of intracranial hypertension, the acute 
rise in capillary pressure also induces a degree of barotrauma 
capable of damaging the capillary-alveolar membrane, which 
ultimately leads to vascular leak and persistent protein-rich 
pulmonary edema [25,27]. This additive effect of a high-pressure 
hydrostatic insult coupled with direct pulmonary endothelial 
membrane injury subsequently gives rise to the degree of edema 
formation described as the “blast injury theory” [26,28]. 

Vagal tone: A series of 11 patients who developed acute 
pulmonary edema within 2 hours of acute increase in ICP from 
various causes (SDH, status epilepticus, epidural hemorrhage, 
intraventricular hemorrhage and SAH) was conducted. All 
but 1 patient died, and autopsy showed non-cellular foamy 
diffuse pulmonary edema [29]. Whether bradycardia caused by 
increased vagal tone following increased ICP produces pulmonary 
congestion by reducing cardiac output is unclear, but animal 
experiments do suggest an association [14,15,30]. 

Direct increase in pulmonary capillary permeability: Data in 
observational studies have suggested that in addition to the 
hemodynamic effects, catecholamines also induce pulmonary 
edema by increased inflammatory stimulus evidenced by pro-
inflammatory cytokine expression and cellular recruitment 
[31,32]. 

In summary, pulmonary edema in the setting of acute lung injury 
appears to be multifactorial in etiology and is characterized in the 
following Figure 1.

Diagnosis 
The ability to identify patients at a greater risk of NPE allows 
clinicians to monitor patients with greater vigilance and 
subsequently take earlier measures to minimize the impact and 
its progression to other forms of lung injury in ABI including 
ARDS. Diagnosis of NPE is clinical and relies on symptoms and 
physical exam findings consistent with pulmonary edema, such 
as dyspnea, tachypnea, and crackles, plus radiographic changes 
(bibasilar opacities, air bronchograms) in the setting of a 
neurologic insult. The resolution of symptoms within 72 hours is 
also a strong indicator of NPE. Some potential markers of disease 
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include elevated Troponin I, APACHE II score >20, leukocytosis, 
and IL-6 >40 pg/mL [33-35]. However, these need further rigorous 
testing to confirm their predictive accuracy in patients with ABI 
before they can be widely utilized. Because there is no definitive 
test for NPE, exclusion of other more common disease processes 
including infectious, cardiogenic, and noncardiogenic causes of 
pulmonary edema is necessary. 

Results and Discussion
Management 
NPE can present very similarly to ARDS. Therefore, the basis of 
treatment modalities begins with those found to be helpful in 
ARDS, with some modifications to account for management of 
the accompanying neurologic injury. Treatment must take into 
consideration the balance of consequences that lung treatment 
has on the brain and that brain treatment has on the lung. 
Furthermore, it is important to recognize that even in patients 
who develop NPE, the instigating neurologic insult is more 
likely to determine the outcome than the NPE itself. However, 
those who develop NPE tend to have worse outcomes overall. 
This being said, treatment must focus primarily on neurologic 
preservation and insult reversal, with supportive care provided 
to manage the associated pulmonary edema. Specific strategies 
are outlined below. 

Ventilator management of lung injury in ABI: Positive pressure 
ventilation and intracranial pressure/hemodynamics are inter-
related, and achieving a balance of adequate oxygenation with 
PEEP, non-injurious ventilation with low tidal volumes, while 
maintaining ICP in a desired range can be challenging. PEEP 
improves oxygenation by alveolar recruitment and increasing 
Functional Residual Capacity (FRC). However, in theory, PEEP can 
also reduce Mean Arterial Pressure (MAP) and increase Central 
Venous Pressure (CVP), thus impeding venous return from the 
brain resulting in increased ICP, which may individually and 
collectively reduce Cerebral Perfusion Pressure (CPP). Studies 
evaluating the effect of PEEP on ICP and CPP are contradictory 
some suggesting that PEEP can have a deleterious effect on ICP, 
especially in patients with baseline elevated ICP, while others 
indicate no significant impact on ICP [36-41]. The relationship of 
ICP and PEEP is influenced by several factors, which includes the 
level of PEEP applied, baseline ICP, compliance of the lungs, MAP, 
cardiac output, and intracranial compliance. These conflicting 
results are, at least in part, reflective of differences in both 
lung compliance and intracranial compliance in the populations 
studied [42]. Permutt and colleagues demonstrated that the rise 
in ICP is greater in subjects with normal ICP than in those with 
baseline increased ICP, a phenomenon explained by the starling 
resister concept which describes the flow of fluid in collapsible 
tubes, also described as the “vascular waterfall” [43]. Although 

Figure 1 Cascade of additive mechanisms after initial increase in intracranial pressure eventually leading to 
pulmonary edema. ICP: Intracranial Pressure; LV- Left Ventricle. Note:  There is evidence that increase 
in ICP may be responsible for increase in pulmonary capillary permeability independent of change in 
pulmonary hemodynamics. 
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avoiding steroids in patients with ABI. The effects of steroids 
in lung injury such as NPE, is suggested by studies focusing 
on ARDS. However, conclusions from these are inconsistent 
and contradictory. Early studies have shown benefit of using 
methylprednisolone for the treatment of ARDS [60]. However, 
this was again examined in a randomized controlled study, 
showing that methylprednisolone did not alter 60 day or 180 day 
mortality when started after 7 days of persistent ARDS. Although 
it did improve cardiopulmonary physiology when started early, 
increased mortality was noted when glucocorticoids were 
initiated beyond 14 days of ARDS onset [61]. One meta-analysis 
by Tang and colleagues showed improved mortality with the use 
of corticosteroids, while another one showed a trend towards 
reduced mortality and increased ventilator free days [62,63].

A randomized placebo-controlled trial (MRC CRASH) 
studying 10,008 patients with ABI and using high doses of 
methylprednisolone for 48 hours starting within 8 hours after 
the injury, demonstrated increased 2-week mortality in the 
corticosteroid group [64]. A recent phase 3 randomized clinical 
trial examining the safety and efficacy of progesterone in a large 
sample of patients with severe traumatic brain injury, failed to 
demonstrate any difference in favorable outcome or mortality 
compared to placebo [65]. Though corticosteroids may have 
some beneficial effect in lung injury, with data suggesting lack of 
efficacy and increased mortality in patients with ABI, routine use 
of steroids cannot be recommended.

Non-conventional strategies to improve 
oxygenation
Patient positioning: Head of bed elevation to 15 to 30 degrees 
should be considered, as that can have additional beneficial 
effect of ICP reduction [66].

Prone positioning improves oxygenation and as such is an 
attractive option for patients with hypoxemia [67]. However, there 
remains a concern regarding its effect on intracranial pressure. 
One small study of 11 patients suggested that prone position does 
not increase ICP in patients with reduced intracranial compliance, 
while a randomized controlled study of 51 patients showed 
significant increase of ICP with prone positioning [68,69]. Other 
than the concern regarding increased ICP, prone positioning can 
pose technical challenges of turning patients with ICP monitoring 
devices, and some with on-going multimodality monitoring 
due to the risk of accidental removal and thus safe use of these 
devices. Reinprecht A, et al. [69] studied prone positioning in SAH 
patients with ARDS and while ICP increased, and CPP decreased, 
there was improvement in brain tissue oxygenation and PaO2. 
However, currently there is no compelling evidence that isolated 
improvement in brain tissue oxygenation results in improved 
outcome. Therefore, prone positioning should probably be 
reserved as rescue therapy in patients with refractory severe 
hypoxemia despite the use of conventional measures, while 
carefully monitoring the ICP.

Fluid management: Careful fluid balance is essential in the 
management of critically ill patients. Hypervolemia is common 
among patients with ABI through various mechanisms of LV strain, 
Takotsubo cardiomyopathy, shifts of blood volume from peripheral 

Sagittal Sinus Pressure (SSP) increases with therapeutic levels of 
PEEP, the collapse of the veins connecting cortical veins to the 
superior sagittal sinus prevents transmission of the pressure to 
the cortical veins and results in a significant rise in cortical veins 
which collapse easily [44-46].

If there is strong clinical suspicion for a low intracranial compliance 
at baseline, then ICP monitoring should be considered especially 
if patients are expected to need higher levels of PEEP. PEEP 
adjustments can then be guided by the effect on ICP and CPP. If 
ICP or other cerebral monitoring (e.g. brain tissue oxygenation) 
devices are not in place, then the minimum PEEP necessary to 
maintain oxygenation should be used in order to minimize the 
detrimental effects elevated ICP can have in ABI.

Hypoxemia and hyperoxia: Hyperoxia has been studied in 
patients with ABI suggesting that hyperoxygenation should 
improve or prevent cerebral hypoxia and limit secondary injury 
[47-49]. Increasing fraction of inspired oxygen (FIO2) to 1.0 has 
been shown to improve brain tissue oxygenation and lower 
cerebral lactate levels when measured by microdialysis.

Cerebral vasodilation consequent to hypoxemia can increase 
ICP and reduce CPP especially in patients with intracranial 
hypertension who may already be on the steep portion of the ICP/
volume curve [50]. A Transcranial Doppler (TCD) ultrasound study 
in healthy human volunteers found that the hypoxic vasodilatory 
threshold of PaO2 is 58 mmHg and SpO2 of 90% [51]. While brain 
injury may alter these thresholds, it is reasonable to target PaO2 
and SpO2 above these levels to minimize the risk of hypoxemia 
induced cerebral vasodilation and elevations of ICP.

Hypercapnia and hypocapnia: Studies on cerebral vasomotor 
reactivity using TCD and cerebral angiography have shown 
cerebral vessels reacting to changes in pCO2 [52,53]. Hypocapnia 
causes vasoconstriction and potentially decreasing ICP, while 
hypercapnia causes vasodilation with the potential to increase ICP. 
However, the appropriate target PaCO2 and the appropriate tool 
to measure the impact of changes in PaCO2 remain controversial. 
Prolonged prophylactic hyperventilation is associated with worse 
clinical outcomes [54,55] and is not recommended by the Brain 
Trauma Foundation (BTF) [56]. 

It appears reasonable to target a PaCO2 of 35-38 mm Hg in patients 
with NPE. This may be problematic while attempting to minimize 
ventilator-induced lung injury by employing low tidal volume 
ventilation. Low tidal volume ventilation results in decreased 
mortality and increased number of ventilator free days not only 
in medical patients with lung injury, but also in patients with ABI 
[57-59]. Low tidal volume ventilation, however, commonly results 
in PaCO2 levels that are elevated (40-44 +/- 10-12 mm Hg in the 
ARDSNet trial). Thus, a balance may need to be struck between 
tidal volume, minute ventilation and PaCO2. One suggestion may 
include the use of slightly higher tidal volume targets than the 
ARDS Net trial – perhaps as high as 7-8 mL/kg ideal body weight if 
needed to maintain eucapnia [57]. Alternatively, it may be helpful 
to offset the elevated PaCO2 by increasing the respiratory rate 
while being mindful of plateau pressures.

Glucocorticoids: The use of steroids in the treatment of NPE is 
of unclear benefit. Brain trauma foundation guidelines advocate 
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circulation to pulmonary circuit, pulmonary venoconstriction, etc. 
[16]. This fluid imbalance concern can lead to acute pulmonary 
hypertension resulting in worsening pulmonary edema and poor 
outcomes in patients with ABI. Because of this, hypervolemia is no 
longer recommended in the management of acute brain injuries. 
It has been demonstrated that even small doses of fluids in the 
presence of acute pulmonary hypertension can either precipitate 
or worsen pulmonary edema [70]. Maintenance of euvolemia is 
of particular importance when applying PEEP, as MAP can drop if 
intravascular volume is low, which can affect CPP [36,37].

Conclusion
NPE is a frequent cause of lung injury in patients with ABI and 
should be considered along with other common causes, including 
but not limited to, aspiration pneumonia, pulmonary trauma, 
and pulmonary embolism. Development of NPE is associated 

with increased mortality and worse neurologic outcomes. 
Catecholamine surge during an acute CNS insult is a central 
common pathway which leads to a cascade of downstream events 
including NPE via different mechanisms such as left ventricular 
strain, Takotsubo cardiomyopathy, shifts of blood volume from 
periphery to pulmonary circuit and pulmonary venoconstriction. 
Diagnosis relies on the presence of respiratory symptoms and 
corresponding imaging findings in the setting of a neurologic 
insult. Management strategies should focus on maintenance of 
euvolemia, normocapnia, and normoxemia. Effect of PEEP on ICP 
requires balancing between effective oxygenation and improving 
intracranial compliance. Early institution of ICP monitoring may 
be considered in the appropriate patient. Clinicians should 
recognize NPE associated lung injury as unique and requires early 
recognition and specific treatment approaches that may reduce 
further injury. 
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