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Rapid Communication
Normal thyroid functions are required during the perinatal

development [1-39]. During the last years, antiepileptic drugs
(AEDs) such as sodium valproate (VPA) [40-42],
phenobarbital(PB) [40], carbamazepine (CBZ) [43], phenytoin
(PHT) [40] and lamotrigine (LTG) [41,44] and gabapentin (GBP,
second generation AEDs) can alter the fetal development, and
cause a neuronal injury [45], teratogenic effects [46,47] and
several congenital malformations [48-50]. Also, they can
decrease the levels of thyroid hormones (THs), inhibit the Na+/Iˉ
symporter and the iodide (Iˉ) utilization [51], eliminate THs and
stimulate TH-glucuronoconjugation [52]. AEDs may interact with
hypothalamo-pituitary axis, synthesis of GH-releasing hormone
(GHRH) and its metabolism via stimulating [53,54] or inhibiting
the hormone metabolism [54]. This may be due to disruption of
the activities of THs that may delay growth [10,55], and loss of
anabolism during the hypothyroidism [56].

On the other hand, AEDs might induce the epileptogenesis
[57], mental retardation [58], severe neuronal migration
disorders, neuronal cell death, cortical deformation and
developing brain distortion [59]. This may be due to CBZ blocked
the voltage-dependent sodium channels [60], and decreased the
density [61,62] and permeability of these channels during the
early developmental period [63]. These disturbances might be
attributed to the imbalance in the maternofetal THs-axis
(hypothyroidism) as suggested by Ahmed et al. [29]. This might
influence, generally, on the health of the fetuses depending on
the degree of the maternofetal hypothyroidism and fetal TH-
brain dysfunctions.

On the other hand, the skeletal anomalies were found in
fetuses of rats after the maternal exposure to GBP or VPA (Singh
et al., 2014). However, these anomalies were more significant in
VPA than GBP. In humans and animals, the teratogenic effects of
GBP such as delayed ossifications and skeletal deformations are
inconsistent and inconclusive due to the environmental and
molecular mechanisms, GBP doses, route and time of

administration, animal species and sex type [64-66].
Importantly, the fetal skeletal system is more sensitive to GBP
during organogenesis in different animal models such as rats
[67], mice [68,69] and chick [70]. GBP or VPA can cross the
placenta and accumulate in several fetal organs delaying the
osteogenesis and chondrogenesis [71-77]. These variations
might be attributed to GBP or VPA can alter the maternofetal
mineral and trace elements [78]. In rats, the maternal exposure
to 400 mg VPA significantly reduced the level of zinc (Zn, critical
for the organogenesis) in both dams and their embryo's [79].
The deficiency in Zn [67,79] and fluctuation in the concentration
of GABA (γ-aminobutyric acid) neurotransmitter [66]might be
caused skeletal teratogenicity. Thus, Zn may play an important
role in the calcification and bone mineralization during the
organogenesis [68,69,80]. However, extrapolation of animal
investigations to clinics should be importantly scrutinized.

On the basis of these data, it can be concluded that the
administration of AEDs may cause dysfunctions in the
communication between dams and their fetuses, and in the
developmental thyroid-brain axis. These effects might depend
on the concentration and period of administration of AEDs, and
sex type and developmental period of animal species. Additional
studies are necessary to clarify the potential associations with
human health. Future examinations are needed to explore
whether the effect of maternal AEDs on the developmental
neuroendocrine system (THs-brain axis) and the cytokines
markers play a role in modifying the signaling pathways related
to the cellular proliferation and cell death during the perinatal
period.
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